Fret荧光共振能量转移

对于分子生物学来讲,生物分析手段的发展,是阐明机理的必要条件。在研究分子间相互作用的道路上,人们不断探索,总结出很多方法,免疫技术,晶体衍射,核磁共振等。1948年,荧光共振能量转移(Fluorescence resonance energy transfer,FRET)理论被首次提出,它可以测定1.0-6.0nm距离内分子间的相互作用。1967年,这一理论得到了实验验证,将1.0-6.0nm的距离称为光学尺。二十世纪八十年代出,通过科学家的不断探索,Fret技术成功运用到蛋白质结构的研究中。自Fret荧光共振能量技术诞生以来,已结合多种先进的技术和方法,如电子显微镜,X射线衍射等,推动了分子生物学检测手段的发展。

作用原理

荧光共振能量转移技术,是采用物理方法去检测分子间的相互作用的方法。他适用于在细胞正常的生理条件下,验证已知分子间是否存在相互作用。此方法的检测原理如下;fret-yl

将我们要检测的蛋白(如图X和Y),分别偶联上D和A荧光蛋白,D和A是一对荧光物质,我们称之为供体(donor)和受体(acceptor)。当用430nm的紫光去激发X融合蛋白时,它能够产生490nm的蓝色荧光;同样,当我们用490nm的蓝光去激发Y融合蛋白时,它能够产生530nm的黄色荧光。(结合图1) 。

当蛋白X和Y间没有相互作用时(两者的空间距离>10nm),融合蛋白X和Y分别产生相应的荧光而被检测到,fret-jh如果蛋白X和Y间存在相互作用(两者的空间距离需<10nm,结合图2),用紫光激发融合蛋白X其产生的蓝光会被融合蛋白Y吸收,从而产生黄色荧光,这时,在细胞内将检测不到蓝色荧光的存在。这时因为能量从X融合蛋白转移到了Y融合蛋白,这就是荧光共振能量转移技术。

技术难点

一个理想的Fret相互作用体系,要求要有一对合适的荧光物质, 即供体的发射光谱与受体的吸收光谱有明显的重叠。且当供体的激发波长时对受体无影响,供体和受体的发射光谱要完全分开,否则容易造成光谱干涉,而使反应体系不稳定。目前,较为常用的供体-受体分子对,主要有绿色荧光蛋白类(GFPs)和染料类。绿色荧光蛋白类有CFP-YFP,BFP-GFP,BFP-YFP等,染料类的有Cy3-Cy5,FITC-Rhodamine等。且这些荧光物质要能够标记在研究对象上。

应用要求

  • 供体荧光基团和受体荧光基团的空间距离要<10nm;
  • 供体的发射光谱与受体的接收光谱有相当的重叠;
  • 供体、受体分子在量子产率、消光系数、水溶性、抗干扰能力等方面要求较高。

优缺点

优点 缺点
在活细胞的正常生理条件下进行检测,观察大分子在细胞内的构象变化与相互作用,并弥补了需破碎细胞检测相互作用的缺点;
灵敏度高,可实现对单细胞水平的研究,研究单个受体分子;
可与多种仪器和技术结合使用,如显微镜,色谱技术,电泳,流失细胞技术等;
应用比较局限,一般需要在待检测分子上偶联荧光物质(加上标记);
对实验要求较高,如供受体的光谱重叠不好,会导致荧光干扰,对供受体的抗干扰能力,水溶性等要求高;
需要不断探索合适的供体和受体,且能够标记分子;
难以观察瞬时的分子间作用,检测要求大量的样品;

应用

  • 细胞内分子间的相互作用
  • 膜蛋白的研究
  • 细胞膜受体蛋白间的相互作用
  • 细胞凋亡的研究
  • 核酸检测

实验流程简述

以荧光物质CFP(供体)-YFP(受体)为例,检测AB蛋白在细胞内的相互作用。

  1. 细胞培养:根据实验培养特定的细胞用于转染,观察检测分子在细胞内的相互作用;
  2. 细胞转染:构建质粒载体CFP-A和YFP-B,将检测的AB蛋白分别偶联上荧光蛋白CFP和YFP,并将两个质粒共转染到培养的细胞内;
  3. 检测 FRET:质粒载体CFP-A和YFP-B转染细胞 10h、12h、18h、24h、36h、48h、72h 后检测,是否发生Fret;
  4. FRET图像采集: 确定 FRET 配对的激发波长, 蓝光被调谐分别用于探测最大和最小的供体和受体信号, 最大供体信号和最小受体信号对应的波长用于收集双表达细胞的 FRET信号。调整激光变化,以便获取最大 CFP 信号和最小 YFP 信号的激发光波长, 采集供体和受体图像,收集 FRET 信号。每个细胞 FRET 检测重复 3 次,每种转染至少完成 6 个细胞的 FRET 检测;
  5. FRET 数据处理: 去除 FRET 信号中 DSBT 和 ASBT 的光谱串色信号; 受体通路的FRET 信号需要对供体受体光谱灵敏度的变化进行矫正、对自发荧光和光学噪声进行矫正; 利用矫正系数对双标定细胞进行象素匹配矫正。

相关阅读

立即询价
  • 姓名

  • 电话

  • 咨询项目

  • 留言: